Cellule staminali in Italia: breve storia di una grande conquista

È ormai da tempo che le cellule staminali sono al centro di un ampio dibattito che coinvolge non solo l’ambito scientifico, ma anche quello religioso, etico, giuridico e politico.

Da quando nel 1960 McCulloch e Till scoprirono l’esistenza delle cellule staminali nel midollo osseo1, cioè un tessuto semi-solido presente all’interno delle ossa dell’organismo, esse sono entrate a far parte della nostra vita, suscitando curiosità e interesse, ma anche timore e scetticismo.

Figura 1. Perché le cellule staminali sono importanti (modificata e tradotta da europarl.europa.eu – Parlamento Europeo)

L’enorme potenzialità delle cellule staminali, che ha condotto numerosi ricercatori ad approfondire questo campo, risiede nella loro capacità di automantenersi e autorinnovarsi e di differenziare in diversi tipi di cellule che compongono i tessuti e gli organi del nostro organismo. Ciò significa che le cellule staminali possono essere impiegate in ambito clinico per la riparazione e la rigenerazione dei tessuti e per la terapia di numerose patologie.

Sappiamo già da tempo che è consentito, anche in Italia2, il trapianto di cellule staminali ematopoietiche, cioè quelle da cui derivano tutte le nostre cellule del sangue, per la cura di diversi tipi di leucemie e altri disordini ematici, ma chiaramente la ricerca in questo ambito non si è fermata qui.  Infatti sono molte le ricerche che si stanno compiendo per studiare diversi tipi di cellule staminali da applicare nella terapia di altre patologie considerate finora intrattabili, come i tumori, le malattie del sistema immunitario e alcune patologie cardiache, muscolari, osteoarticolari e persino neurodegenerative. Inoltre, grazie al progresso delle biotecnologie, si stanno studiando nuovi approcci terapeutici.

Con l’avvento della medicina rigenerativa è infatti possibile rigenerare i tessuti danneggiati attraverso l’impiego di cellule staminali opportunamente coltivate in laboratorio e differenziate nel tessuto di interesse. Si è inoltre recentemente sviluppato un altro ramo della medicina rigenerativa, l’ingegneria tissutale, cioè una scienza che applica sia principi dell’ingegneria, sia quelli delle scienze biomediche. L’obiettivo dell’ingegneria tissutale è quello di ricostruire in laboratorio dei sostituti biologici in grado di rigenerare tessuti e organi danneggiati, combinando le cellule staminali con i biomateriali, cioè materiali compatibili con i tessuti dell’organismo, in grado di supportare la crescita di nuove cellule e poi di degradarsi in modo spontaneo nel tempo. Le cellule staminali vengono infatti immesse all’interno dei biomateriali e con essi impiantate. Una volta all’interno dell’organismo, le cellule, grazie ad una serie di segnali specifici e all’interazione con l’ambiente circostante, saranno indotte a proliferare, a differenziare e a sostituire progressivamente il tessuto danneggiato.

Figura 2. Le cellule staminali embrionali totipotenti sono in grado di dare origine all’intero organismo e agli annessi extra-embrionali, tra cui la placenta. Le cellule staminali embrionali pluripotenti generano i tre foglietti embrionali (endoderma, mesoderma, ectoderma) da cui derivano tutti i tessuti e gli organi. Le cellule staminali pluripotenti indotte sono cellule staminali la cui pluripotenza viene indotta in laboratorio a partire da cellule adulte riprogrammate. La riprogrammazione cellulare può offrire una valida alternativa all’impiego di cellule staminali embrionali umane. Le cellule staminali multipotenti, avendo perso la pluripotenza, sono cellule specializzate che danno origine ad un limitato numero di tipi cellulari. La capacità delle cellule staminali di differenziare in numerose cellule specializzate le rende potenzialmente applicabili in campo terapeutico per rimpiazzare cellule danneggiate di diversi tessuti e organi dell’organismo

La ricerca sulle cellule staminali in Italia, come del resto anche in altre parti del mondo, non ha sempre trovato la strada spianata: nel 2004 la legge 40 ha limitato la fecondazione in vitro ad uso autologo, cioè a partire da cellule prelevate dallo stesso paziente, così come la ricerca sulle cellule staminali embrionali umane; nel 2005 siamo stati chiamati a votare per il referendum abrogativo di tale legge, ma non è stato raggiunto il quorum. Nel 2009 un decreto legge ha vietato in Italia la conservazione delle cellule staminali provenienti da sangue cordonale e da cordone ombelicale ad uso autologo, mentre è possibile conservarle presso strutture all’estero. Nonostante i passi avanti compiuti di recente nell’ambito della fecondazione medicalmente assistita, c’è ancora molta strada da fare nel campo della manipolazione degli embrioni e quindi anche delle cellule staminali embrionali, ma non solo.

Malgrado ciò, è recente la notizia di un importante traguardo raggiunto da due ricercatori italiani: si tratta di Michele De Luca, docente di Biochimica presso l’Università degli Studi di Modena e Reggio Emilia e direttore del Centro Medicina Rigenerativa “Stefano Ferrari”, e di Graziella Pellegrini, docente di Biologia applicata presso la stessa università e coordinatrice della terapia cellulare presso il Centro Medicina Rigenerativa “Stefano Ferrari”.

Hanno infatti vinto il prestigioso Premio per l’Innovazione 2018 (Innovation Award 2018)  da parte della International Society for Stem Cell Research (ISSCR), che verrà consegnato a giugno in Australia durante il meeting annuale della società.

Nel corso delle loro ricerche, De Luca e Pellegrini sono infatti riusciti a ricostruire un frammento di cornea umana a partire dalla coltivazione in vitro, cioè in laboratorio, di cellule staminali prelevate dal limbus, una zona dell’occhio responsabile della rigenerazione della cornea. Innestando tale frammento in pazienti che avevano subito un danno oculare, in seguito al quale la cornea aveva perso la capacità di rigenerarsi, è stato possibile ripararla, con risultati duraturi nel tempo. Tale protocollo terapeutico, applicato con successo in diversi casi, è stato quindi approvato nel 2015 come primo farmaco a base di cellule staminali corneali umane autologhe da parte della European Medicines Agency (EMA) e denominato Holoclar®.

De Luca e Pellegrini sono stati anche i primi ricercatori in Europa ad impiegare con successo le cellule staminali per la rigenerazione della cute nella terapia di gravi ustioni. A partire da queste ricerche, sempre nel 2015 hanno potuto impiegare per la prima volta le cellule staminali per curare un bambino affetto da epidermolisi bollosa giunzionale. Questa rara patologia genetica è caratterizzata dalla presenza di bolle e desquamazioni della cute, che la rendono estremamente fragile come le ali di una farfalla (per questo motivo i bambini che ne sono affetti vengono spesso denominati “bambini farfalla”).

Grazie alla coltivazione in vitro di cellule staminali prelevate da una piccola biopsia, cioè da un frammento di pelle di una zona non lesionata, i due ricercatori hanno potuto ricreare in laboratorio un innesto di cute, che è stato successivamente trapiantato sull’area danneggiata, consentendo, a due anni dall’intervento, la rigenerazione dell’epidermide3.

Questi sono solo alcuni dei promettenti risultati ottenuti mediante l’applicazione clinica delle cellule staminali per la rigenerazione tissutale e la terapia di diverse patologie.

È senz’altro ancora necessaria una continua e profonda conoscenza delle cellule staminali, che non possono essere considerate come la panacea di tutti i mali, ma date le loro straordinarie potenzialità e alla luce della passione e dell’impegno di numerosi ricercatori, è auspicabile che in un futuro non troppo lontano malattie per le quali non vi è ad oggi una cura efficace possano essere trattate mediante la loro applicazione.

Fonti:

  1. McCulloch, E.A., Till, J.E. The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiation Research, 13(1):115–125 (1960);
  2. Indicazioni cliniche per le quali è consolidato l’uso per il trapianto di cellule staminali ematopoietiche, con comprovata documentazione di efficacia, per le quali è opportuna la raccolta dedicata di sangue cordonale – Gazzetta Ufficiale della Repubblica Italiana – Serie generale – n. 303 del 31/12/2009;
  3. Hirsch et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature, Volume 551, pages 327–332 (2017).

Ulteriori indicazioni bibliografiche:

 

Farmaco Equivalente o Originale?

Oggigiorno si sente continuamente parlare in tv, sui social, per radio di farmaci equivalenti.

Cosa si intende per farmaco equivalente? Perché è definito così? Attualmente su questa tematica c’è tanto da discutere, proviamo a mettere un po’ di ordine.

Che cos’è un farmaco equivalente?

La caratteristica principale del farmaco equivalente è quella di avere il principio attivo ( la sostanza da cui dipende l’attività curativa del farmaco) nella stessa forma farmaceutica del farmaco originale (originator), ciò che varia sono gli eccipienti, ovvero altri elementi che si trovano all’interno del farmaco nella sua forma finita.

Sono gli eccipienti (sostanze prive di proprietà terapeutiche, ma necessarie per facilitare l’assunzione o rendere il farmaco disponibile all’organismo) che possono provocare reazioni allergiche. Molto spesso non si conoscono nella loro totalità e quindi diventa imprevedibile sapere se possono alterare alcune reazioni all’interno del nostro organismo.

Un parametro di un farmaco equivalente da non sottovalutare è la sua biodisponibilità, ovvero il tempo necessario per rendere il principio attivo disponibile all’organismo. Se la biodisponibilità l’equivalente oscilla tra il 3 ed il 5%  si può affermare che non ci sono variazioni significative rispetto all’originale.

Occhio alla provenienza

Un fattore rilevante ,ma spesso sottovalutato, è il sito di produzione del farmaco. La maggior parte delle aziende farmaceutiche a causa degli elevati costi di gestione e di produzione ha spostato all’estero gli stabilimenti produttivi; ciò ha fatto sì che spesso non si conosca la provenienza del farmaco e quali siano gli eccipienti inseriti.

Invece i  farmaci equivalenti prodotti in Italia  sono sottoposto a controlli da parte dell’AIFA (Agenzia Italiana del Farmaco) durante tutti i vari step della loro produzione; ciò fornisce una maggiore garanzia sulla loro sicurezza.

Di contro quelli prodotti all’estero subiranno procedure e controlli totalmente diversi da quelli italiani non permettendo sempre di appurare la loro reale efficacia.

Perché un farmaco equivalente è più economico?

Un farmaco equivalente nasce quando scade il brevetto del farmaco originale, facendo decadere  il costo del prodotto e la ricerca del principio attivo. Ecco spiegato il calo del prezzo.

Ad oggi l’uso di questa tipologia di farmaci si rivela più economico sia per i pazienti, sia per il SSN (Sistema Sanitario Nazionale) che tende così a concentrare la spesa economica su farmaci più specifici e costosi.

Alla luce di queste informazioni, ricordiamoci sempre che anche un farmaco equivalente resta pur sempre un farmaco (ogni possibile abuso anziché risolvere un problema rischia di generarne altri) e gli eccipienti utilizzati o la provenienza di questi possono mutare (seppur sensibilmente) le proprietà del farmaco; per questa ragione resta sempre valido il consiglio di informarsi su queste caratteristiche quando ne valutiamo l’acquisto.

[A. L. A.]

Riferimenti:

Non tutta la “ciccia” viene per nuocere

di M. Falzone

Quanti di noi si sono lamentati nel corso della vita del proprio tessuto adiposo? Denigrato e mascherato come meglio si può, in realtà questo tessuto, comunemente chiamato “ciccia” o “grasso”, è ricco di tante sorprese!

Gordos campesinos… guerrilleros en los ojos de Botero (ojos bastante sesgados) (di Sol Robayo, https://www.flickr.com/photos/solrobayo/4460131669)

Il tessuto adiposo è la più grande riserva energetica del nostro corpo, ma oltre a ciò sono ben conosciute altre funzioni come quelle riportate di seguito:

  • Sostegno e protezione (costituendo una sorta di “impalcatura” per molti organi e fungendo da “ammortizzatore” contro gli urti);
  • Termogenesi (regolando la temperatura corporea in risposta a basse temperature);
  • Secrezione di ormoni (come la leptina, coinvolta anche nello stimolo della fame).

Circa due terzi del tessuto adiposo è costituito da adipociti maturi (le cellule tipiche di questo tessuto), mentre la restante parte è costituita da una componente vasculo-stromale (vasi sanguigni e tessuto connettivo circostante) che contiene cellule di vario tipo e fra queste vi sono anche le cellule staminali mesenchimali chiamate hASC (human Adipose-derived Stromal Cells). Le cellule staminali mesenchimali sono cellule adulte, indifferenziate e multipotenti: non hanno ancora deciso che “mestiere” fare, ma se ben istruite, possono specializzarsi in diversi settori. Le hASC dunque, se adeguatamente istruite, in vitro possono differenziarsi in cellule del tessuto osseo, cartilagineo, adiposo, muscolare, tendineo, neuronale. La nostra ciccia è dunque capace di grandi cose!

Dato che il tessuto adiposo è facilmente accessibile nel nostro corpo e può essere prelevato senza complicazioni per il paziente e in assenza di sintomatologia dolorosa, le hASC in esso

contenute sono considerate una buona risorsa per la Medicina rigenerativa e l’ingegneria tissutale.

Quindi in breve:

  • Il tessuto adiposo nel corpo umano è abbondante e può essere facilmente prelevato con piccole biopsie o liposuzione;
  • Nel tessuto adiposo vi sono le cellule hASC;
  • Le cellule hASC in vitro possono essere indotte al differenziamento in cellule dell’osso, della cartilagine, del muscolo, dei tendini e del sistema nervoso.

Ma le sorprese della ciccia non finiscono qui!

Pochi anni fa è stata scoperta anche la capacità degli adipociti di “dedifferenziare”: gli adipociti sono cellule mature, ma sottoposte a coltura in vitro possono ritornare allo stato di cellule non specializzate (dedifferenziate) capaci di assumere funzioni diverse. Il dedifferenziamento è rilevabile anche seguendo il loro cambiamento morfologico: al settimo giorno di coltura gli adipociti maturi sferici iniziano a perdere il loro contenuto lipidico e ad assumere una forma più frastagliata e appiattita tipica delle cellule staminali mesenchimali.

E’ una sorta di riciclo: le cellule adipose in eccesso o scartate durante interventi chirurgici, vengono sottoposte a coltura e dopo dedifferenziamento possono assumere nuova vita differenziando in altre cellule come quelle dell’osso ad esempio, ritornando ad essere utili per la riparazione tissutale o per il trattamento di alcune patologie. Queste cellule prodigiose sono chiamate DFAT (Dedifferentiated Fat Cells).

Vi sono dunque due popolazioni di cellule staminali ricavabili dal tessuto adiposo: le hASC e le DFAT. La ricerca continua a lavorare su queste cellule e in futuro potranno essere utilizzate in vivo anche nell’uomo. Ma non è meraviglioso?

Per saperne di più:

  • M.Saler, L.Caliogna, L.Botta, F.Benazzo, F.Riva, G. Gastaldi. hASC and DFAT, Multipotent Stem Cells for Regenerative Medicine: A Comparison of Their Potential Differentiation In Vitro. International Journal of Molecular Sciences. 2017
  • Medet Jumabay, Kristina I Boström. Dedifferentiated fat cells: A cell source for regenerative medicine. World Journal of Stem Cells. 2015

 

Zhong Zhong e Hua Hua, le prime scimmie clonate come la pecora Dolly

È accaduto in Cina, alla “Chinese Academy of Science Institute of Neuroscience” di Shanghai e lo studio è stato pubblicato sulla celebre rivista “Cell”, creando molto scalpore e non solo nel mondo scientifico: sono state clonate per la prima volta due scimmie con la tecnica detta somatic cell nuclear transfer (SNCT).

Leggi di più

Nuove molecole ad attività battericida

di Giovanna M.

L’utilizzo frequente di antibiotici ha portato allo sviluppo di ceppi 

batterici resistenti a questi farmaci, spingendo i ricercatori ad isolare nuove molecole antibatteriche per contrastarli ovvero i peptidi (proteine). Questa nuova classe di antibiotici è rappresentata dai peptidi antimicrobici (AMPs, Anti Microbial Peptides) che trovano già impiego in numerosi campi  come l’agricoltura, l’industria alimentare e l’acquacoltura, a cui va aggiunto il campo clinico che negli ultimi 25 anni ha intensificato le proprie ricerche. 

 

 

 

 

 

 

 

Gli AMPs appartengono al sistema immunitario innato, in grado di esercitare un’azione antimicrobica contro diversi patogeni dannosi per la salute dell’uomo e per la qualità degli alimenti. Quelli di origine naturale sono piccole molecole di lunghezza variabile, contenenti dai 10 ai 50 amminoacidi. Essi costituiscono la prima linea di difesa degli organismi contro una grande varietà di agenti esterni ed hanno una doppia valenza, perché oltre a proteggere circa l’80% delle specie animali inferiori e tutte le piante dall’attacco dei patogeni, giocano un ruolo importante anche nell’immunità degli organismi superiori collegando i meccanismi dell’immunità innata ed acquisita.

 

Sono ulteriormente suddivisi in due sottoclassi: AAMPs (anionici, carica netta negativa) e CAMPs (cationici, carica netta positiva). Questi ultimi rappresentano il gruppo maggiormente studiato ed utilizzato per lo sviluppo di nuovi farmaci. Sono considerati ottimi candidati come agenti terapeutici per molteplici ragioni: agiscono contro batteri Gram positivi e negativi, lieviti e virus e sono prodotti da una vasta gamma di organismi tra cui insetti, piante, batteri, funghi, anfibi e mammiferi. Sono caratterizzati da rapidità d’azione e riescono a neutralizzare le endotossine. Hanno bassa capacità di indurre la comparsa di ceppi resistenti e la loro azione battericida diretta sia verso cellule in attiva divisione che verso cellule quiescenti li rende dei farmaci promettenti anche per il trattamento di infezioni croniche.

 

Il principale bersaglio molecolare dei CAMPs è la membrana batterica, il meccanismo d’azione non è del tutto chiaro perciò sono stati proposti una serie di modelli che prevedono un’interazione elettrostatica dovuta alle cariche opposte tra peptidi e membrana che ne altera la struttura facilitando l’accesso all’interno della membrana.

Attualmente il metodo di produzione classico conosciuto per la produzione di queste molecole è la sintesi chimica ma richiede costi elevati e tempi molto lunghi. In alternativa al metodo sintetico è stata utilizzata una tecnica ricombinante mediante la quale i peptidi sono espressi in un ospite eterologo che normalmente non lo produrrebbe, il più utilizzato è E. coli, e successivamente vengono isolati da esso per studiarne la capacità tramite saggi di attività antimicrobica. Alcuni di quelli già prodotti hanno mostrato un’elevata efficienza su ceppi di Staphylococcus aureus (foto a sinistra) e Pseudomonas aeruginosa (foto a destra). 

                        

              

Ad oggi sono sette i CAMPs in fase di studio clinico, soprattutto per applicazioni topiche. Ad esempio, per il trattamento di ferite infette ed ulcere, per la prevenzione delle infezioni associate all’uso dei cateteri ed altri ancora per il trattamento di infezioni del cavo orale.

             

[GM]

 

Fonti

Wiesner J e Vilcinskas A, Virulence 1(5):440-64 (2010) https://goo.gl/vqbMMV

Mahlapuu M et al., Front Cell Infect Microbiol 6:194 (2016) https://goo.gl/PCdosM

Sangue artificiale: a che punto siamo?

La donazione del sangue da parte di soggetti volontari sani è ad oggi l’unica modalità per assicurare continuità e sicurezza alle terapie trasfusionali. Ciononostante, complicazioni legate alla non compatibilità tra gruppi sanguigni, alla scarsa disponibilità e talora ai bassi standard di sicurezza riscontrati nei paesi in via di sviluppo rendono l’approvvigionamento di sangue per le trasfusioni un problema non indifferente. E’ plausibile pensare che in un futuro la ricerca scientifica consentirà di produrre sostituti artificiali del sangue, rivoluzionando la medicina trasfusionale? Gli scienziati credono di sì.

Sacca di sangue per trasfusioni (By ICSident at German Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=29492562)

Il progetto è però ambizioso: il liquido rosso che circola nei nostri vasi sanguigni è straordinariamente complesso nelle sue funzioni e composizione. Costituito da milioni di composti chimici e cellule diverse, il sangue assolve meticolosamente a una serie di funzioni: trasporta ossigeno e nutrimento ai tessuti, raccoglie i prodotti del catabolismo, mantiene costanti pH e temperatura corporea, trasporta ormoni verso i loro tessuti bersaglio e ci protegge dai patogeni. Ancora non esiste un surrogato di sangue in grado di adempiere a tutti questi compiti, ma si stanno investigando diverse soluzioni, in buona parte basate sull’emoglobina, la proteina contenuta nei globuli rossi e responsabile del trasporto dell’ossigeno.

L’emoglobina è un tetramero, ossia una proteina costituita da quattro parti. Fuori dal globulo rosso viene però rapidamente degradata nelle forme dimerica o monomerica, costituite rispettivamente da due o una parte e potenzialmente tossiche. Per rendere l’emoglobina “acellulare” più stabile ed aumentare le sue performance in termini di trasporto di ossigeno, si è provato a modificarla chimicamente rinforzando i legami tra le sue quattro porzioni, collegando tra loro più molecole a formare una catena o coniugandola ad altri composti chimici. Nonostante le potenzialità, nessuna di queste soluzioni acellulari è veramente ottimale: l’emoglobina infatti funziona meglio all’interno del globulo rosso che non all’esterno.

Per questa ragione diversi gruppi di ricerca stanno studiando come generare globuli rossi artificiali. Semplificando al massimo, una cellula, e quindi anche un globulo rosso, è uno spazio acquoso delimitato da una membrana composta da grassi chiamati fosfolipidi. Incapsulando l’emoglobina in uno strato fosfolipidico è possibile quindi simulare una struttura cellulare ed aumentare di molto la sua stabilità nella circolazione sanguigna ed il trasporto di ossigeno.

I globuli rossi artificiali potrebbero dunque nei prossimi decenni diventare una realtà, alleviando la scarsità di sangue a disposizione per le trasfusioni in situazioni di emergenza ed in particolar modo nei paesi in via di sviluppo, dove si concentra l’80% della popolazione mondiale ma si raccoglie solo il 32% delle scorte mondiali di sangue e con bassi standard di sicurezza e alto rischio di trasmissione di infezioni.

Di Erika Salvatori

Fonti e approfondimenti:

OGM o non OGM: questo è il problema!

Un pubblico non specializzato alla domanda “cos’è un OGM?” probabilmente risponderebbe che è un organismo che ha subìto una manipolazione genetica, che è stato “geneticamente modificato”. La risposta è corretta, ma solo parzialmente e pecca di imprecisione: non tutti gli organismi geneticamente modificati sono OGM!

Leggi di più

Ciclo mestruale in provetta

L’apparato riproduttore femminile è un sistema formato da organi e tessuti quali ovaio, tube di Falloppio, utero e cervice che svolgono funzioni diverse. Tra queste c’è la regolazione degli ormoni sessuali. L’interazione tra tessuti e ormoni è così complessa che nessuno fino ad ora era riuscito a ricreare in vitro (in laboratorio) le stesse condizioni che avvengono in vivo (nell’organismo). Nessuno fino al 2017.

Schema del dispositivo (dall’articolo orginale pubblicato su Nature Communictions, vedi sezione “Fonti”)

I ricercatori dell’università di Chicago e di Cambridge hanno utilizzato la recente tecnica chiamata “organo su chip” per studiare il tratto riproduttivo femminile che consiste in un microsistema fisiologico formato da un chip di silicio in cui vengono inseriti dei microframmenti di tessuti o cellule immerse in un fluido. Sul chip si possono inserire cellule di tessuti diversi che sono collegati tra loro mediante microcanali dotati di sensori che analizzano ciò che li attraversa.

In questo caso sul chip sono stati inseriti tessuti di ovaio di topo e di tube di Falloppio, endometrio (la membrana che riveste l’utero), cervice e fegato di origine umana. Nel corso dell’esperimento, in un mese, sono stati registrati i picchi di estrogeni e progesterone tipici del ciclo mestruale umano.

Ora i biologi sperano di poter ricreare oltre le interazioni ormonali anche quelle che permettono al sistema riproduttivo di sostenere il feto e l’influenza su di esse del sistema immunitario.

Questa tecnologia potrebbe incidere sulla scoperta di nuovi farmaci per trattare i disturbi dell’apparato riproduttore femminile e potrebbe portare allo sviluppo di nuove strategie anticoncezionali.

Di G. M.

Fonti:

Il cervello non ha rughe

Di Erika Salvatori

“Il cervello non ha rughe: se continua a lavorare sodo, si rinnova continuamente, anche dopo gli 80 anni e, a differenza di altri organi, può persino migliorare”: non potremmo usare parole migliori di queste della grande scienziata Rita Levi Montalcini per introdurre il concetto di plasticità sinaptica, la capacità del cervello di modificare la sua struttura e funzionalità a seconda dell’esperienza.

Per molti anni l’apprendimento e la memoria sono stati considerati argomenti di psicologia più che di biologia. In tempi più recenti si è invece scoperto come dietro questi fenomeni si celino complessi meccanismi cellulari e molecolari: quando apprendiamo qualcosa, il nostro cervello subisce un riarrangiamento strutturale e funzionale, più o meno duraturo, che coinvolge le sinapsi, ossia i punti di contatto tra neuroni che servono a propagare gli impulsi nervosi.

Il modello più noto di plasticità sinaptica è quello del “potenziamento a lungo termine” e del suo opposto “depressione a lungo termine”, che si fonda sulla pionieristica ricerca dello psicologo canadese Donald Hebb. Entrambi i meccanismi sono mediati dai recettori per il neurotrasmettitore glutammato, una molecola segnale che viene rilasciata dal neurone pre-sinaptico e determina una risposta eccitatoria nel neurone post-sinaptico. Quando il glutammato si lega al proprio recettore (NMDA), questo si attiva e consente l’ingresso di calcio nel neurone post-sinaptico. Il calcio modula una serie di processi biochimici e molecolari alla base della funzionalità della sinapsi, come la sintesi di neurotrasmettitori o recettori, cambiamenti nella velocità di conduzione degli stimoli nervosi o variazioni nella taglia o numero delle cosiddette “spine dendritiche”, piccole protrusioni ricoprenti i dendriti, che si propagano a partire dal corpo del neurone.

Gli stessi recettori e modulatori intervengono in entrambi i processi di potenziamento e depressione: a cambiare è il tipo di stimolazione pre-sinaptica (e dunque la quantità di calcio in ingresso nel neurone post-sinaptico): più precisamente una stimolazione ripetuta ed intensa determina un aumento della funzionalità della sinapsi, mentre una stimolazione a frequenza più bassa ne determina una riduzione.

Il potenziamento a lungo termine è collegato non solo ai processi di apprendimento e memoria, ma anche, in alcune sue manifestazioni anomale, a diverse patologie e alla dipendenza da stupefacenti ed è perciò molto studiato nell’ambito delle neuroscienze.

“Tieni allenato il tuo cervello” è dunque molto più che uno slogan per  pubblicizzare giornali enigmistici: le esperienze che facciamo, le nozioni che apprendiamo contribuiscono a rinforzare e rimodellare i nostri circuiti cerebrali permettendoci, come la Montalcini ci ha insegnato, di mantenere una sorprendente lucidità anche fino a 100 anni!

 

Per approfondire: